Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Effect of the Various Solvents on the In Vitro Permeability of Vitamin B12 through Excised Rat Skin

Eskandar Moghimipour1,2, Anayatollah Salimi1,2, Behzad Sharif Makhmal Zadeh1,2

1Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Khuzestan; 2School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

For correspondence:-  Behzad Zadeh   Email: bsharifmakhmalzadeh@yahoo.com   Tel:+986113373747

Received: 2 November 2012        Accepted: 23 June 2013        Published: 18 October 2013

Citation: Moghimipour E, Salimi A, Zadeh BS. Effect of the Various Solvents on the In Vitro Permeability of Vitamin B12 through Excised Rat Skin. Trop J Pharm Res 2013; 12(5):671-677 doi: 10.4314/tjpr.v12i5.2

© 2013 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose:  To investigate the effect of different solvents on the in vitro skin permeability of vitamin B12.
Method: Vitamin B12 (B12) permeability experiments through rat skin pretreated with various solvents namely, propylene glycol, oleoyl macrogol-6-glycerides, propylene glycol monocaprylate and oleic acid, were performed in Franz diffusion cells and compared with hydrated rat skin as control. The permeability parameters evaluated include steady-state flux (Jss), lag time (Tlag), permeability coefficient (Kp) and diffusion coefficient (D). The solvents’ permeability enhancement mechanisms were investigated  by comparing of changes in peak position and their intensities of assymmetric (Asy) and symmetric (Sym) C-H stretching, and C=O stretching absorbance using Fourier transform infrared spectroscopy (FTIR), as well as by comparing mean transition temperature (Tm) and their enthalpies (W10;H) using differential scanning calorimetery (DSC).
Results: All the solvents significantly decreased diffusion coefficient (p < 0.05), with capryol showing the greatest enhancement ratio (ERD) based on diffusion coefficient   followed by labrafil, oleic acid and propylene glycol. Flux enhancement ratio (ERflux) for all the solvents was < ERD. The solubility of B12 in stratum corneum was the rate-limiting step in partitioning. All solvents with different lipophilic properties decreased drug solubility in the stratum corneum and hence lowered partitioning and flux. FTIR and DSC results showed lipid fluidization and extraction by labrafil and capryol, disruption of lipid structure and fluidization by oleic acid, and interaction with stratum corneum keratin by propylene glycol.
Conclusion: Water is a suitable topical vehicle for B12 as it can increase partitioning and diffusion through rat skin.  

Keywords: Percutaneous absorption, Enhancer, Vitamin B12, Skin permeation, Diffusion coefficient, Flux, Enthalpy

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates